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Abstract

This paper studies a pro-competitive effect of joint bidding in multi-unit uniform

price auctions where bidders have private values and demand different quantities of

units. We analyze a simple model with three identical items for sale, two small bid-

ders each demanding a single unit, and a big bidder demanding two units. We show

that joint bidding of the two small bidders, which recovers the symmetry of bidders,

enhances competition among the bidders and increases efficiency and revenue of the

auction.
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1 Introduction

Studies on anti- and pro-competitive effects of joint bidding have been a subject for public

policy debates over the past few decades. Ever since Markham (1970), researchers have been

concerned about the anti-competitive effects of joint bidding, as it reduces the number of

bidders, thus reducing competition. However, pro-competitive arguments of joint bidding

have been reported as well. First, joint bidding serves as a vehicle for circumventing capital

constraints, thus encouraging entry by small bidders (Hendricks and Porter, 1992). Second,

when auctioned objects are risky, joint bidding allows bidders to share the risk, leading to

more aggressive bidding (Millsaps and Ott, 1985). Third, in common value auctions, joint

bidding allows bidders to pool their information to have more precise estimates of the value

of the item, thus mitigating the winner’s curse, leading to more aggressive bids (DeBrock and

Smith, 1983; Krishna and Morgan, 1997). In this paper, I demonstrate a pro-competitive

effect of joint bidding based on mitigating demand reduction rather than capital constraint,

risk, and information pooling.

Previous studies showing pro-competitive effects of joint bidding focus on single-unit

auctions. In contrast, the current paper reports a pro-competitive effect of joint bidding in

multi-unit uniform price auctions where bidders have private values and demand different

numbers of units. I consider a uniform price auction where three identical items are sold, and

a big bidder demands two units and two small bidders each demand one unit. In equilibrium,

the small bidders submit bids equal to their values and the big bidder reduces demand for

his second unit to get the first unit at a cheaper price. Now suppose the two small bidders

merge and bid jointly1. The merger has two effects: first, the merged bidders now also

reduce demand for their second unit, which adversely affects the seller’s revenue. Second,

their reduction in demand for the second unit encourages the big bidder to bid more for his

1So that they behave as a single bidder demanding up to two units.
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second unit, as he now has a chance of winning the second unit at an advantageous price.

When the second effect dominates the first effect, it increases the clearing price and the

seller’s revenue.

The asymmetry among bidders in the model plays an important role as the pro-competitive

effect of joint bidding is attributed to the fact that the joint bidding alters an asymmetric

competition structure into a symmetric one. Thus, joint bidding among symmetric bidders

would not have such a pro-competitive effect. Levin (2004) analyzes the competitive effect of

joint bidding of symmetric bidders who originally demand a single unit then, after they are

randomly paired up, demand up to two units with joint bidding. In his model, no demand

reduction exists without joint bidding so joint bidding only increases monopsony power and

strengthens anti-competitive behavior.

2 The Model

Suppose a seller auctions off three identical items in a uniform price auction and there are

three bidders 1,2 and 3. Bidder 1 demands up to two units (big bidder) and the other bidders

each demand a single unit (small bidder), so the total demand is four units. All valuations

for the items are independently drawn from a CDF, F (v), whose support is [0, 1]. Bidder 1’s

valuations are {v̂1, v1} where v̂1 ≥ v1 (note that bidder 1’s valuations are two independent

random draws from F (v)) and bidder 2 and 3’s valuations are v2 and v3, respectively

2.1 Without Joint Bidding

In the auction, bidder 1 submits bids {b̂I1, bI1} where b̂I1 ≥ bI1 and bidder 2 and 3 respectively

submit bI2 and bI3
2. Without joint bidding, the three highest bids win the items and the

lowest bid sets the price. Bidders 2 and 3 have a (weakly) dominant strategy of bidding

2Superscript I means bids without joint bidding (Individually bidding)
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their values (bI2(v2) = v2, bI3(v3) = v3). Bidder 1 is guaranteed to get his first unit, so the

question is how much he bids on the second unit. Thus, the equilibrium is characterized by

the optimal bid function bI1(v1), given the other bidders submit bids equal to their values.

Since bidder 1 wins two units when bI1(v1) > min(v2, v3) and one unit otherwise, it is

convenient to define vl = min(v2, v3). Since v2 and v3 are independent, vl is a random draw

from a CDF, H(v) = 1 − (1 − F (v))2. The expected payoff of bidder 1 who bids bI1 for his

second unit is

Π(bI1; v̂1, v1) = v̂1 +

∫ bI1

0

(v1 − 2vl)h(vl)dvl + (−bI1)(1−H(bI1))

By differentiating the expected utility with respect to bI1, I get the following necessary con-

dition for the optimal bid bI1(v1):

dΠ

dbI1
= (v1 − bI1)h(bI1)− [1−H(bI1)] ≤ 0 (1)

with strict inequality only if the optimal bid is the corner solution bI1(v1) = 0.

From the necessary condition, it is clear that bidding the value of the second unit is never

optimal ( dΠ
dbI1
|bI1=v1 < 0), so bidder 1 must exercise demand reduction for his second unit.

2.2 With Joint Bidding

Now suppose bidders 2 and 3 merge into a bid consortium and bid jointly. The bid consortium

demands up to two units and the valuations for the two units follow the original valuations

of the two bidders {v2, v3}. For notational convenience, I denote the higher one of the two

values v̂c and the lower one vc, so the valuations of the bid consortium are {v̂c, vc}, where

v̂c ≥ vc. Note that vc is a random draw from a CDF, H(v) = 1− (1− F (v))2 since it is the

lower of two independent draws {v2, v3} from F (v).

In the auction, bidder 1 submits bids {b̂J1 , bJ1} where b̂J1 ≥ bJ1 and the bid consortium
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bids {b̂Jc , bJc } where b̂Jc ≥ bJc
3. The three highest bids win the items and the lowest bid sets

the price. Note that now there are two symmetric bidders (bidder 1 and bid consortium)

who both demand two units, with each bidder guaranteed to get his first unit. Therefore, a

symmetric Bayesian Nash equilibrium is obtained by characterizing a symmetric bid function

for the second unit, bJ(v). The expected payoff of bidder 1 who bids bJ1 for his second item

is:

Π(bJ1 , v̂1, v1) = v̂1 +

∫ (bJ )−1(bJ1 )

0

(v1 − 2bJ(vc))h(vc)dvc + (−bJ1 )[1−H((bJ)−1(bJ1 ))]

By differentiating the expected payoff with respect to bJ1 and using that it is optimal to

bid bJ(v) at an equilibrium, I get the following necessary condition for an equilibrium bid

function 4.

(v1 − bJ(v1))h(v1)− (bJ)′(v1)(1−H(v1)) = 0

Solving this ODE gives the equilibrium bid function, which is a special case of Theorem

6 of Engelbrecht-Wiggans and Kahn (2002)

bJ(v1) = v1 −
∫ v1

0

1−H(v1)

1−H(x)
dx (2)

From the bidding function (2), it is clear that bidder 1 and the bid consortium exercise

demand reduction.

Without joint bidding, only bidder 1 reduces his demand, but with the joint bidding, all

bidders reduce their demands. So does this mean that the joint bidding reduce the seller’s

revenue? The answer is not necessarily. Demand reduction of the merged bidders mitigate

big bidder’s incentive to submit a low bid for the second unit as the big bidder now have

3Superscript J denotes bids with Joint bidding
4Note that bJ(v) = 0 never occurs with the joint bidding. If bJ(v) = 0 for any interval, then bidding

slightly more than 0 will break the tie and ensures the second unit, breaking the equilibrium.
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a chance of winning the second unit at a cheaper price. I will show an example where the

joint bidding mitigate the demand reduction of bidders 1 (i.e bI1(v1) < bJ(v1)) and the seller’s

revenue increases.

2.3 An Example of the Pro-Competitive Effect of Joint Bidding

Example 1. When F (v) = 1 −
√

1− v, so H(v) = v, bidder 1’s optimal bid without joint

bidding is bI1(v1) = 0 and the optimal bid with the joint bidding is bJ(v1) = v1−(1−v1)ln 1
1−v1 .

Therefore, the seller’s revenue is greater with the joint bidding.

To see this, note that the optimal bid of bidder 1 without the joint bidding, bI1(v1), is

characterized by (1):

dΠ

dbI1
= (v1 − bI1)h(bI1)− [1−H(bI1)] = (v1 − bI1)− (1− bI1)

= v1 − 1 < 0, for all v1 ∈ [0, 1)

Thus, bI1(v1) = 0. On the other hand, bJ(v1) = v1 − (1− v1)ln 1
1−v1 > 0 is obtained by (2).

Without the bid consortium, bidder 1 completely reduces his demand for his second unit,

setting the clearing price at 0, hence the seller earns nothing. Since the two small bidders

submit bids equal to their valuations and their valuations are likely to be high (F (v) has

higher probability density at higher values), it is more profitable for bidder 1 to avoid the

competition for his second unit with the small bidders and set a lower price for his first item.

However, with joint bidding, bidder 1 finds it worth submitting a positive bid for his second

unit. This is because the demand reduction of the bid consortium for their second unit gives

a chance for a bidder 1 to get his second unit at a favorable price.
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3 Environments for the pro-competitive effect

In this section, I analyze the environments where the pro-competitive effect is likely to ap-

pear. Due to asymmetry of bidders and non-existence of explicit bid function of non-merger

case, bI1(v1), it is formidable 5 to generalize conditions where the seller’s (expected) revenue

increases with the joint bidding. However, since the seller’s revenue is closely related to the

magnitudes of demand reduction with and without merger, I will focus the environments

where the demand reduction mitigated by the merger (i.e. bI1(v1) < bJ(v1)). In particular,

when bidder 1 completely reduces his demand under non-merger, bI1(v1) = 0 < bJ(v1), the

seller’s revenue will unambiguously increase with the merger.

3.1 When bidder 1 has small realization of v1

Proposition 1. If limb→0+ h(b) <∞, there exists v∗ ∈ (0, 1) below which bI1(v) = 0. On the

contrary, bJ(v) > 0 regardless of distribution of values.

Proof. Since limb→0+ h(b) < ∞, h(b) < ∞ for all b < v ∈ (0, 1). Bidder 1 with value v will

completely reduce his demand for the second unit if (v− b)h(b)− [1−H(b)] < 0 for all b ≤ v

6

sup
b≤v

[(v − b)h(b)− [1−H(b)]] = v sup
b≤v

h(b)− [1−H(v)]

v sup
b≤v

h(b)− [1−H(v)] < 0 when v <
1−H(v)

supb<v h(b)

v is increasing from 0 and 1−H(v)
supb<v h(b)

decreasing from a positive number since limb→0+ h(b) <

∞. Therefore, there is v∗ ∈ (0, 1) below which v supb≤v h(b)− [1−H(v)] < 0.

5one may use the argument of being efficient is being optimal.. (Ausbel and Crampton Paper,1999) This
is just a conjecture for now but if this works out, the ideas can even extended to even more number of
bidders.

6Bidding above value is dominated, so I only need to consider b ≤ v
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With the merger, as discussed in 2.3, a symmetric equilibrium cannot have a bid function

that has an interval where full complete reduction arises. In particular, there is no such

complete demand reduction even with a small value. To show this I set up a lemma that

will be frequently used in this paper.

Lemma 1. Equation (2), the necessary condition for bJ(v), can be rewritten as

(v1 − b)g(b)− [1−G(b)] = 0, where G(b) = H((bJ)−1(b)) (3)

Proof. See the Appendix.

Now, I will show that limb→0+ g(b) =∞, thus bJ(v) does not subject to proposition 1.

g(b) = G′(b) = H ′((bJ)−1(b)) =

h((bJ)−1(b))
1

(bJ)′((bJ)−1(b))
= h((bJ)−1(b))

1

h((bJ)−1(b))
∫ (bJ )−1(b)

0
1

1−H(x)
dx

=
1∫ (bJ )−1(b)

0
1

1−H(x)
dx

, thus lim
b→0+

g(b) =∞

Without joint bidding, if bidder 1’s realized valuation for this second unit is so small,

the benefit of increasing the probability of winning the second item by bidding more is so

small, its better to give up the competition for the second item. The only case where it is

still worth competing for the second item with a small realized value is when the probability

distribution h(b) has unbounded density for small values, so the competing bidders also very

likely to receive small realized values.

Example 2. Suppose F (x) = x, so H(x) = 1 − (1 − x)2 and h(x) = 2(1 − x) < ∞. As

proposition 2, bN(v) = 0 when v < 0.5 and bI1(v) = 2v − 1, v ≥ 0.5. Moreover, bI1(v) < bJ(v)
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for all v ∈ [0, 1) (see figure 1) and the seller’s expected revenue increases from 0.15 to 0.2

with the merger.

Figure 1: Bid functions

Proof. For the revenue part, see the Appendix

3.2 When H(v) has a high expected value

Proposition 2. If H(b) ≤ b (graphically, H(b) is below 45 degree line), then bI1(v) = 0 for

all v.

Proof. See the Appendix

Intuitively, H(b) < b implies that, in expectation, a random draw from H(b) is likely to

be high since E(v) =
∫ 1

0
[1−H(v)]dv 7. Thus, bidder 1 is likely to face rivals with high values.

7For non-negative random variable, integration above a CDF is the expected value
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In the non-merger case, bidder 2 and 3 bid their values. Therefor, bidder 1 can better of

by giving up competing for the second unit and set the price at 0 regardless of the realized

value of bidder 1.

Corollary 3. If H(b) ≤ b, sellers revenue under non-merger is 0. Thus, the seller’s revenue

unambiguously increases with the merger.

Example 3. When H(x) = xa and a ≥ 1, bN(v) = 0. On the contrary, when H(x) = xa

and a < 1, bI(v) > 0 for all v > 0.

Proof. By proposition 2, the former statement is true. For the latter one, see the appendix

3.3 The General Condition for bI1(b) < bJ(b)

Proposition 4. A sufficient condition bI1(b) < bJ(b) for all v ∈ [0, 1] is h(b)
1−H(b)

< g(b)
1−G(b)

for

b ∈ [0, 1], where G(b) = H((bJ)−1(b)).

Proof. The necessary conditions of optimal bidding in non-merger (1) and merger (3) cases

can be re-written as

(v − b) h(b)

[1−H(b)]
− 1 = 0 (4)

(v − b) g(b)

[1−G(b)]
− 1 = 0 (5)

Suppose all b that satisfy (v − b) h(b)
[1−H(b)]

− 1 = 0 also satisfy (v − b) g(b)
[1−G(b)]

− 1 > 0. This

is a sufficient condition for bJ(v) > bI1(v).

(v − b) h(b)

[1−H(b)]
− 1 = 0

(v − b) g(b)

[1−G(b)]
− 1 =

[1−H(b)]

h(b)

g(b)

[1−G(b)]
− 1

10



From this, g(b)
[1−G(b)]

> h(b)
[1−H(b)]

for all b is a sufficient condition for bJ(v) > bI1(v).

Using G(b) = H((bJ)−1(b)), the sufficient condition can be re-written as

1

[1−H((bJ)−1(b))]
∫ (bJ )−1(b)

0
1

1−H(x)
dx

>
h(b)

[1−H(b)]
For all b ∈ [0.1]

The sufficient condition means if hazard rate of G(.) is greater than hazard rate of H(.),

then bI1(v) < bJ(v). Intuitively, hazard rate means the instantaneous probability that bidding

slightly more leads to winning when the original bid was a losing bid. (4) and (5) means that,

conditional on losing the second unit, the marginal benefit of bidding slight more is profit

margin of second unit multiplied by hazard rate and the marginal cost is a direct loss from

setting higher price for the first unit. g(b)
[1−G(b)]

> h(b)
[1−H(b)]

implies that the marginal benefit is

always higher in the merger case, thus, bidder 1 must bid more in the merger case.

Corollary 5. For every distribution H(v), there is v∗∗ below which bI1(v) < bJ(v)

Proof. I show that there exists v∗∗ below which the following inequality must hold.

h(b)

1−H(b)
<

g(b)

1−G(b)

First of all, H(b) < G(b) since G(b) = H((bJ)−1(b)) and b < (bJ)−1(b). Second, since

H(b) < G(b) and both of them are CDFs, there must be a interval [0, v∗∗] where h(b) < g(b).

Thus the above inequity must hold for any b < v∗∗.

4 Efficiency, Incentive to Merge, Generalizability

In this model, the efficiency of the auction unambiguously increases with the joint bidding

of the small bidders. Without joint bidding, the big bidder avoids competition for his second
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unit, occasionally losing the second unit even though his value for that unit is greater than

the values of bidder 2 or 3. With joint bidding, the bidder with a higher value for the second

unit always wins that unit, resulting in increased efficiency. The increased efficiency in this

model implies that a properly designed merger that recovers symmetry among bidders can

increase social welfare as well as the seller’s revenue.

A limitation of this model is that the smaller bidders may not have an incentive to bid

jointly as it may reduce their profits. For instance, in example 1, the interim expected

profits of smaller bidders given the valuations are v̂c and vc, while the expected joint profit

of bidding jointly is v̂c + 1
2
v2
c

8. However, if participating in the auction is costly, the smaller

bidders can have an incentive to bid jointly. Suppose the participating cost is vc. Then

without joint bidding, both small bidders enter the auction and the expected profits are

v̂c−vc and 0. With joint bidding, on the contrary, the bid consortium’s expected joint profit

is v̂c + 1
2
v2
c − vc, which is greater than the sum of profits in individual bidding.

Future research can investigate under what conditions that the pro-competitive effect

holds. It is straightforward to show that the pro-competitive effect holds for any distribution

that first-order stochastically dominates the distribution in example 1. In general, however,

comparing expected revenue of the seller with and without joint bidding is a difficult task

due to the asymmetry of the bidders and the implicit form of the bid function bI1(v1).
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A Appendix

A.1 Symmetry Equilibrium with Joint Bidding, bM(v)

The necessary condition of the symmetric equilibrium is

(v − b(v))h(v)− b′(v)(1−H(v)) = 0

Solving the ODE,

b′(v) +
h(v)

1−H(v)
b(v) =

h(v)

1−H(v)
v

µ(v)b′(v) + µ(v)
h(v)

1−H(v)
b(v) = µ(v)

h(v)

1−H(v)
v

Assuming µ(v) h(v)
1−H(v)

= µ′(v)

µ(v)b′(v) + µ(v)′b(v) = µ(v)
h(v)

1−H(v)
v

µ(v)b′(v) =

∫ v

0

µ(x)
h(x)

1−H(x)
xdx+ c

b(v) =

∫ v

0
µ(x) h(x)

1−H(x)
xdx+ c

µ(v)

Solve µ(v)

µ(v)

µ′(v)
=

h(v)

1−H(v)

ln(µ(v)) =

∫ v

0

h(x)

1−H(x)
dx+ k

µ(v) = k′ exp(

∫ v

0

h(x)

1−H(x)
dx)

µ(v) = k′ exp(−ln(1−H(v)) = k′
1

1−H(v)
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Plug in µ(v) above bidding function b(v)

b(v) = (1−H(v))

[∫ v

0

h(x)

[1−H(x)]2
xdx+

c

k′

]

with initial condition b(0) = 0

b(v) = (1−H(v))

∫ v

0

h(x)

[1−H(x)]2
xdx

using integration by part

b(v) = (1−H(v))

([
x

1

1−H(x)

]v
0

−
∫ v

0

1

1−H(x)
dx

)
= (1−H(v))

(
v

1

1−H(v)
−
∫ v

0

1

1−H(x)
dx

)
= v −

∫ v

0

1−H(v)

1−H(x)
dx

Now the last part is to show that b(v) is indeed an equilibrium. In other words, there is

no incentive to deviate from the strategy. Recall that the expected payoff of bidding b1

Π(b1, v̂1, v1) = v̂1 +

∫ b−1(b1)

0

(v1 − 2b(z))h(z)dz − b1[1−H(b−1(b1))]

= v̂1 + v1H(b−1(b1))−
∫ b−1(b1)

0

2b(z)h(z)dz − b1[1−H(b−1(b1))]
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Using the bidding function from above

∫ b−1(b1)

0

2b(z)h(z)dz =

∫ b−1(b1)

0

[2(1−H(z))h(z)(

∫ z

0

y
h(y)

(1−H(y))2
dy)]dz

=

[
−(1−H(z))2

∫ z

0

y
h(y)

(1−H(y))2
dy

]b−1(b1)

0

−
∫ b−1(b1)

0

(
−(1−H(z))2z

h(z)

(1−H(z))2

)
dz

= −(1−H(b−1(b1)))2

∫ b−1(b1)

0

y
h(y)

(1−H(y))2
dy +

∫ b−1(b1)

0

zh(z)dz

= −[1−H(b−1(b1))]b1 +

∫ b−1(b1)

0

zh(z)dz

plug this in the expected utility

Π(b1, v̂1, v1) = v̂1 + v1H(b−1(b1))−
∫ b−1(b1)

0

zh(z)dz

= v̂1 +

∫ b−1(b1)

0

(v1 − z)h(z)dz

This is clearly maximized at b1 = b(v1)

A.2 Lemma 1

With the merger, we know that the bid consortium bids according to the equilibrium bid

bJ(vc). Since vc is a random draw from H(v), bM(vc) is a random draw of H((bJ)−1(v)). Let

G(v) = H((bJ)−1(v)). The expected payoff of bidder 1 given the bid consortium bid bJ(vc)

is:

Π(b1; v̂1, v1) = v̂1 +

∫ b1

0

(v1 − 2vc)g(vc)dvc + (−b1)(1−G(b1))
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and the neccessary condition for the optimal bid b(v1) is

(v1 − b)g(b)− [1−G(b)] = 0

A.3 Example 2

The necessary condition for non-merger case is (v−b)h(b)− [1−H(b)] = 2(v−b)(1−b)−(1−

b)2 ≤ 0. Since (1− b) > 0, the condition can be re-written 2(v− b)− (1− b) = 2v− b−1 ≤ 0.

For v < 0.5, the inequality holds strictly, thus, bN(v) = 0. For v ≥ 0.5, the condition

holds equality when b = 2v − 1, thus, bN(v) = 2v − 1 (Note that the second derivate is

−2(v − b) < 0, so it is indeed an optimal bid).

Let RN denotes the revenue under non-merger.

RN =

∫ 1
2

0

∫ 1

0

0h(vl)h(v1)dvldv1 +

∫ 1

1
2

∫ 2v1−1

0

3vlh(vl)h(v1)dvldv1 +

∫ 1

1
2

∫ 2v1−1

0

3vlh(vl)h(v1)dvldv1

+

∫ 1

1
2

∫ 1

2v1−1

3(2v1 − 1)h(vl)h(v1)dvldv1 = 0 + 0.075 + 0.075 = 0.15

Let RM denotes the revenue under the merger. bid function bM(v) = v2 by (2). Let

ṽ denotes the lowest value among all bidders. ṽ is a random variable drawn from H̃(ṽ) =

1− (1− F (ṽ))4

RM =

∫ 1

0

3ṽ2h̃(ṽ)dṽ = 0.2

A.4 Proposition 3

Recall that the necessary condition for bI1(v) is (v− b)h(b)− [1−H(b)] ≤ 0. Since the LHS is

the marginal benefit of increasing bid,
∫ k

0
(v− b)h(b)− [1−H(b)]db is total benefit of bidding

k ∈ [0, 1]. I will show the total benefit is always negative for k > 0 so any positive bidding
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is worse than bidding 0.

claim. ∫ k

0

(v − b)h(b)− [1−H(b)]db ≤
∫ k

0

(v − b)− [1− b]db < 0

The second inequality is obvious. Since −[1−H(b)] < −[1− b] by assumption, the only

thing to show is
∫ k

0
(v − b)h(b)db ≤

∫ k

0
(v − b)db. Since H(0) = 0 and H(1) = 1, there is at

least a point where h(b) = 1 by mean value theorem on [0, 1]. Suppose there are n points that

satisfy h(b) = 1 and denote each point (c1, c2, ..., cn). If there is a continuum of points that

satisfy h(b) = 1, I can safely ignore the continuum points since
∫

(v − b)h(b)db =
∫

(v − b)db

on the range. Then, I will show

∫ k

0

(v − b)h(b)db ≤
∫ k

0

(v − b)db

If no crossing points occur before k, then it must h(b) ≤ 1 for b ∈ [0, k]. If not, integrating

both sides gives H(k) > k and it violates the assumption. Now, suppose, without loss of

generalization, n crossing points occur before k. Then, the inequality to show is

∫ c1

0

(v − b)h(b)db+ ...+

∫ k

cn

(v − b)h(b)db ≤
∫ c1

0

(v − b)db+ ...+

∫ k

cn

(v − b)db∫ c1

0

(v − b)(h(b)− 1)db+ ...+

∫ k

cn

(v − b)(h(b)− 1)db ≤ 0

Each term in the second inequality is either positive or negative. Note that (v − b)

is positive since bidding above values is dominated. So the sign of each term is the sign

of h(b) − 1. First of all, the first term
∫ c1

0
(v − b)(h(b) − 1)db is negative, otherwise, it

implies h(b) − 1 > 0 over [0, c1] and H(c1) > c1, which violate the assumption. Now if

the second term is negative, the sum until the second term is negative. Even if the second

term is positive, the sum until the second term must be negative. To show this, note that∫ c1
0

(h(b) − 1)db +
∫ c2
c1

(h(b) − 1)db is negative. If it is positive, it implies H(c2) > c2 and
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violates the assumption. Thus, |
∫ c1

0
(h(b) − 1)db| > |

∫ c2
c1

(h(b) − 1)db|. Then, since (v − b)

is positive and decreasing in b, |
∫ c1

0
(v − b)(h(b) − 1)db| > |

∫ c1
0

(v − b)(h(b) − 1)db|, which

means the sum until the second term is negative. In this way, the sum up to any term in the

LHS of second inequality is negative. (This statement is not precisely correct and should be

rewritten.)

A.5 Example 3

When H(x) = xa and a < 1, the necessary condition for bN(v) is (v− b)ba−1− [1− ba]. Note

that limb→0+ h(b) = limb→0+ b
a−1 = ∞, thus limb→0+[(v − b)ba−1 − [1− ba]] = ∞. Also note

that limb→v−[(v − b)ba−1 − [1 − ba]] < 0. Therefore, there must be b∗ ∈ (0, v) that satisfies

[(v − b∗)(b∗)a−1 − [1− (b∗)a]] = 0, which implies bM(v) > 0.
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